Agenda

• An Introduction To Honeywell’s UOP
• Biofuels Landscape
• UOP Biofuels Vision
• Sustainable Technology Solutions
Honeywell UOP

UOP Creates Knowledge Via Invention And Innovation And Applies It To The Energy Industry

- 1,570 scientists and engineers
- 2,600 active patents
- Expertise
- Experience

- Process technology
- Catalysts
- Adsorbents
- Equipment
- Services

Petroleum Petrochemicals Natural Gas Renewables

More Than 60% Of The World's Gasoline And 85% Of Biodegradable Detergents Are Made Using UOP Technology
UOP Renewables Vision

- Building on UOP technology and expertise
- Produce real “drop-in” fuels instead of fuel additives/blends
- Leverage existing refining, transportation, energy, biomass handling infrastructure to lower capital costs, minimize value chain disruptions, and reduce investment risk
- Focus on path toward second generation feedstocks & chemicals

Oxygenated Biofuels
- Ethanol
- Biodiesel

Renewable Energy
- Fuel & Power

Hydrocarbon Biofuels
- Diesel
- Jet
- Gasoline

First Generation
- Natural oils from vegetables and greases

Second Generation
- “Other” Oils: Camelina, Jatropha
- Lignocellulosic biomass, algal oils
Mega Trends

• Global Energy Demand is Expected to Grow at CAGR 1.6% Through 2017
 - Primary Energy diversity will become increasingly important over this period with coal, natural gas & renewables playing bigger roles

• Fossil Fuels are Expected to Supply 83% of Energy and 95% of Liquid Transportation Needs

• Biofuels are Expected to Grow at 8-12% per year to ~3.0 MBPD

Source: IEA, 2008
Petroleum Refining Context

- Fossil Fuel production ~100 years
- ~750 refineries
- ~85M BBL of crude refined daily
- ~50M BBL transport fuels; ~6M BBL of aviation fuel (~250 M gallons/day; 90 B gallons/year)
- Complex but efficient conversion processes
Global Legislation Overview

Canadian Law C-33 Mandates:
- E5 by 2010
- B2 by 2012
- B5 in British Colombia by 2010

EU-27 – Adopted Mandates:
- RED – 10% by Energy content by 2020
- GHG – 6% reduction by 2020 from 2010 levels

EISA 2007:
- RFS mandate – 36 Billion Gal by 2022
- Several State mandates in effect
- California – LCFS mandated
- GHG initiatives established in NE States

Mandates:
- Brazil: E25/B3
- Colombia: E10/B5

Canadian Law C-33 Mandates:
- E5 by 2010
- B2 by 2012
- B5 in British Colombia by 2010

EU-27 – Adopted Mandates:
- RED – 10% by Energy content by 2020
- GHG – 6% reduction by 2020 from 2010 levels

EISA 2007:
- RFS mandate – 36 Billion Gal by 2022
- Several State mandates in effect
- California – LCFS mandated
- GHG initiatives established in NE States

Mandates:
- Brazil: E25/B3
- Colombia: E10/B5

Legislation Spurring More Biofuel Use Globally

E_ : % Renewable content in Gasoline
B_ : % Renewable content in Diesel
Biofuels: Variable Performance to Date

- **Corn Ethanol** — Low production costs and scalable yet suffered in the food versus fuel debates. Life Cycle Analysis currently a subject of debate.

- **Biodiesel** — Regional legislation in a global market created economic bubbles which collapsed as legislation amended, and short term micro-economic shocks corrected.

- **Cellulosic Ethanol** — Great promise but rate of commercialization arguably behind initial DOE expectations. Technology innovations still required.

- **Biomass To Liquids (BTL)** — Excellent fuel properties, but thus far, a high capital route to fuels, and still faces some technical hurdles.

- **Biomass To Power (BTP)** — Incumbent direct firing routes using steam turbines work well, but leave efficiency (and profitability) on the table.

UOP Technologies Are Feedstock Flexible, And Leverage Existing Assets And Technologies
UOP Renewable Energy Technologies

Feed
- Natural Oil/Fats
- Hydrogen

Process
- Ecofining™ Process
- Renewable Jet Process
- RTP™ (Pyrolysis)

Product
- Honeywell Green Diesel™
- Green Jet (if req)
- Honeywell Green Jet™
- Green Diesel
- Green Power / Fuel Oil (now)
- Green Fuels (2011)

Envergent Technologies – UOP/Ensyn JV

Sustainable Technologies – Feedstock Flexible And 2nd Gen Ready
UOP/ENI Ecofining™ Process

- Superior technology that produces Honeywell Green Diesel rather than an oxygenate additive
- Uses existing refining and transportation infrastructure, and can be used in existing automotive fleet
- Two units licensed in Europe, a further under engineering in US
- Feedstock flexible – enabling access to 2nd Gen or low cost feedstocks
- Can be used as an approach to increase refinery diesel output

Process Comparison vs. Biodiesel

<table>
<thead>
<tr>
<th>Natural Oil/Grease</th>
<th>→</th>
<th>Biodiesel (FAME) + Glycerol</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Methanol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Natural Oil/Grease</th>
<th>→</th>
<th>Green Diesel + Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Hydrogen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Process Overview

- Feed
- Reactor System
- Acid Gas Removal
- Make-up Hydrogen
 - 2.2 – 3.5 Wt-%
- CO₂
- Propane
 - 1 – 10 Vol-%
- Water
- Green Diesel Product
 - 88 – 98 Vol-%
- Green Naphtha or Jet
 - 88 – 98 Vol-%

Jefferies Global Clean Technology Conference – March 17, 2010
Honeywell Green Diesel™ Product Comparison

<table>
<thead>
<tr>
<th></th>
<th>Petroleum ULSD</th>
<th>Biodiesel (FAME)</th>
<th>Honeywell Green Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen Content, %</td>
<td>0</td>
<td>11 (−)</td>
<td>0 (+)</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>0.84</td>
<td>0.88 (−)</td>
<td>0.78 (+)</td>
</tr>
<tr>
<td>Cloud Point, °C</td>
<td>-5</td>
<td>-5 to +15 (−)</td>
<td>-20 to +10 (+)</td>
</tr>
<tr>
<td>Cetane</td>
<td>40 - 52</td>
<td>50-65 (+)</td>
<td>70-90 (+)</td>
</tr>
<tr>
<td>Sulphur, ppm</td>
<td><10</td>
<td><2 (+)</td>
<td><2 (+)</td>
</tr>
<tr>
<td>Energy Density, MJ/kg</td>
<td>43</td>
<td>38 (−)</td>
<td>44 (+)</td>
</tr>
<tr>
<td>Energy Content, BTU/gal</td>
<td>129 K</td>
<td>118 K (−)</td>
<td>123 K (+)</td>
</tr>
<tr>
<td>Poly-Aromatics, vol-%</td>
<td>4 - 12</td>
<td>0 (+)</td>
<td>0 (+)</td>
</tr>
<tr>
<td>Colour</td>
<td>Clear</td>
<td>Light to Dark Yellow (−)</td>
<td>Clear (+)</td>
</tr>
<tr>
<td>Oxidative Stability</td>
<td>Baseline</td>
<td>Poor (−)</td>
<td>Baseline</td>
</tr>
<tr>
<td>Production cost $/gallon</td>
<td>Baseline</td>
<td>Baseline - $0.22</td>
<td></td>
</tr>
</tbody>
</table>

UOP’s Proven Refining Technologies Create High Quality Diesel Fuel At A Lower Cost Than Biodiesel
Renewable Aviation Fuel Market Drivers

EU GHG Emissions by Sector as an Index of 1990 Levels

- **US Military’s National Security Driven Goals to Achieve Both Greater Substitution and GHG Reduction**

- **EU Emission Trading Scheme Extending to Aviation Sector:**
 - Aviation emissions: Fastest growing of any sector

Key Drivers of Emissions Reductions

-UOP Process Closes An Unaddressed Gap If Aviation Is To Grow At Or Beneath Carbon Neutrality
UOP Renewable Jet Process Overview

- Initially a DARPA-funded project to develop process technology to produce military jet fuel (JP-8) from renewable sources
- An extension of UOP Ecofining™ process, with selective cracking to make jet-range material
- Produces Honeywell Green Jet™ that meets all properties of ASTM D7566
- Certification for blending up to 50% in progress

Now Available For License
UOP Renewable Jet Process

- Feedstock flexible
- Costs
 - Capex: similar to typical refinery process unit
 - Opex: cost subject to feedstock cost, but can be competitive with Jet A-1
- High quality green hydrocarbon products
 - Swing between Green Jet and Green Diesel production to meet demand and reduce new market uncertainty
Completed Flight Demonstrations

- Successful ANZ Flight Demo
 Date: December 30 2008
 Feedstock: Jatropha oil

- Successful CAL Flight Demo
 Date: Jan. 7 2009
 Feedstock: Jatropha and algal oil

- Successful JAL Flight Demo
 Date: Jan. 30 2009
 Feedstock: Camelina, Jatropha and algal oil
Completed Flight Demonstrations - Continued

UOP Green Jet Fuel Technology Powers KLM Biofuel Demo Flight
On November 23, 2009

- Europe’s first biofuel test flight
- First biofuel test flight to carry observers (42) on board
- One engine of a Boeing 747 was powered with 50/50 blend of green jet and petroleum-derived jet fuel
- Feedstock: Camelina oil, inedible oil
- KLM founded SkyEnergy consortium with North Sea Petroleum and Spring Associates to ensure a steady supply of jet fuel
UOP / Ensyn Joint Venture

- Announced September 2008
- Pyrolysis Oil technology for fuel oil substitution & power generation
- JV is commercialization channel for UOP R&D on upgrading pyrolysis oil to transportation fuels

- Core competence in engineering and technology scale-up
- Experienced Fluidized Catalytic Cracking (FCC) technology licensor
- Modular process unit supplier
- Leader in fundamental catalyst and process development (Upgrading)

- ~20 years of commercial fast pyrolysis operating experience
- Developers of innovative RTP fast pyrolysis process
- 8 commercial RTP units
- Now applying technology to fuel oil and energy

2nd Generation Renewable Energy Company – Global Reach
Rapid Thermal Process (RTP™) Technology

- Patented process
- Biomass converted to liquid pyrolysis oil
- Similar to existing UOP technology
- High yields, >70 wt% liquid on woody biomass
- Suitable for installation in biomass-rich areas

Pyrolysis Oil

Solid Biomass

Proven Technology, Full Scale Designs Available
Pyrolysis Oil Energy Applications

- Replacement of fossil fuel for heat/steam generation ~25% lower energy cost than fossil fuel oil
- Production of green electricity at competitive rates
- Energy densification play compatible with many upcoming technologies
- Considered a key renewables platform technology

Renewable Electricity ~10-12c/kW-h Targeting Renewable Fuels At Fossil Fuel Costs

Current Applications
Emerging Applications
Summary

- UOP has 90 years of oil refining technology expertise and is creating a renewable energy technology portfolio
- Rigorous development process reduces technology risk, and results in high quality fuels
- Feedstock flexibility bridges generational issues related to feedstock sourcing and indirect impacts
- UOP continues to develop its portfolio to meet the challenges of a sustainable renewable fuel future